"""A class to manage creating image content hashes, and calculate hamming distances""" # # Copyright 2013 ComicTagger Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import io import itertools import logging import math from collections.abc import Sequence from statistics import median from typing import TypeVar try: from PIL import Image pil_available = True except ImportError: pil_available = False logger = logging.getLogger(__name__) class ImageHasher: def __init__( self, path: str | None = None, image: Image | None = None, data: bytes = b"", width: int = 8, height: int = 8 ) -> None: self.width = width self.height = height if path is None and not data and not image: raise OSError if image is not None: self.image = image return try: if path is not None: self.image = Image.open(path) else: self.image = Image.open(io.BytesIO(data)) except Exception: logger.exception("Image data seems corrupted!") # just generate a bogus image self.image = Image.new("L", (1, 1)) def average_hash(self) -> int: try: image = self.image.resize((self.width, self.height), Image.Resampling.LANCZOS).convert("L") except Exception: logger.exception("average_hash error") return 0 pixels = list(image.getdata()) avg = sum(pixels) / len(pixels) diff = "".join(str(int(p > avg)) for p in pixels) result = int(diff, 2) return result def difference_hash(self) -> int: try: image = self.image.resize((self.width + 1, self.height), Image.Resampling.LANCZOS).convert("L") except Exception: logger.exception("difference_hash error") return 0 pixels = list(image.getdata()) diff = "" for y in range(self.height): for x in range(self.width): idx = x + (self.width + 1 * y) diff += str(int(pixels[idx] < pixels[idx + 1])) result = int(diff, 2) return result def p_hash(self) -> int: """ Pure python version of Perceptual Hash computation of https://github.com/JohannesBuchner/imagehash/tree/master Implementation follows http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html """ def generate_dct2(block: Sequence[Sequence[float]], axis: int = 0) -> list[list[float]]: def dct1(block: Sequence[float]) -> list[float]: """Perform 1D Discrete Cosine Transform (DCT) on a given block.""" N = len(block) dct_block = [0.0] * N for k in range(N): sum_val = 0.0 for n in range(N): cos_val = math.cos(math.pi * k * (2 * n + 1) / (2 * N)) sum_val += block[n] * cos_val dct_block[k] = sum_val return dct_block """Perform 2D Discrete Cosine Transform (DCT) on a given block along the specified axis.""" rows = len(block) cols = len(block[0]) dct_block = [[0.0] * cols for _ in range(rows)] if axis == 0: # Apply 1D DCT on each row for i in range(rows): dct_block[i] = dct1(block[i]) elif axis == 1: # Apply 1D DCT on each column for j in range(cols): column = [block[i][j] for i in range(rows)] dct_column = dct1(column) for i in range(rows): dct_block[i][j] = dct_column[i] else: raise ValueError("Invalid axis value. Must be either 0 or 1.") return dct_block def convert_image_to_ndarray(image: Image.Image) -> Sequence[Sequence[float]]: width, height = image.size pixels2 = [] for y in range(height): row = [] for x in range(width): pixel = image.getpixel((x, y)) row.append(pixel) pixels2.append(row) return pixels2 highfreq_factor = 4 img_size = 8 * highfreq_factor try: image = self.image.convert("L").resize((img_size, img_size), Image.Resampling.LANCZOS) except Exception: logger.exception("p_hash error converting to greyscale and resizing") return 0 pixels = convert_image_to_ndarray(image) dct = generate_dct2(generate_dct2(pixels, axis=0), axis=1) dctlowfreq = list(itertools.chain.from_iterable(row[:8] for row in dct[:8])) med = median(dctlowfreq) # Convert to a bit string diff = "".join(str(int(item > med)) for item in dctlowfreq) result = int(diff, 2) return result # accepts 2 hashes (longs or hex strings) and returns the hamming distance T = TypeVar("T", int, str) @staticmethod def hamming_distance(h1: T, h2: T) -> int: if isinstance(h1, int): n1 = h1 else: n1 = int(h1, 16) if isinstance(h2, int): n2 = h2 else: n2 = int(h2, 16) # xor the two numbers n = n1 ^ n2 # count up the 1's in the binary string return sum(b == "1" for b in bin(n)[2:])