"""A class to automatically identify a comic archive""" # # Copyright 2012-2014 ComicTagger Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import io import logging from operator import attrgetter from typing import Any, Callable from typing_extensions import NotRequired, TypedDict from comicapi import utils from comicapi.comicarchive import ComicArchive, metadata_styles from comicapi.genericmetadata import GenericMetadata from comicapi.issuestring import IssueString from comictaggerlib.ctsettings import ct_ns from comictaggerlib.imagefetcher import ImageFetcher, ImageFetcherException from comictaggerlib.imagehasher import ImageHasher from comictaggerlib.resulttypes import IssueResult from comictalker.comictalker import ComicTalker, TalkerError logger = logging.getLogger(__name__) try: from PIL import Image, ImageChops pil_available = True except ImportError: pil_available = False class SearchKeys(TypedDict): series: str | None issue_number: str | None month: int | None year: int | None issue_count: int | None class Score(TypedDict): score: NotRequired[int] url: str hash: int class IssueIdentifierNetworkError(Exception): ... class IssueIdentifierCancelled(Exception): ... class IssueIdentifier: result_no_matches = 0 result_found_match_but_bad_cover_score = 1 result_found_match_but_not_first_page = 2 result_multiple_matches_with_bad_image_scores = 3 result_one_good_match = 4 result_multiple_good_matches = 5 def __init__(self, comic_archive: ComicArchive, config: ct_ns, talker: ComicTalker) -> None: self.config = config self.talker = talker self.comic_archive: ComicArchive = comic_archive self.image_hasher = 1 self.only_use_additional_meta_data = False # a decent hamming score, good enough to call it a match self.min_score_thresh: int = 16 # for alternate covers, be more stringent, since we're a bit more # scattershot in comparisons self.min_alternate_score_thresh = 12 # the min distance a hamming score must be to separate itself from # closest neighbor self.min_score_distance = 4 # a very strong hamming score, almost certainly the same image self.strong_score_thresh = 8 # used to eliminate series names that are too long based on our search # string self.series_match_thresh = config.Issue_Identifier__series_match_identify_thresh # used to eliminate unlikely publishers self.publisher_filter = [s.strip().casefold() for s in config.Issue_Identifier__publisher_filter] self.additional_metadata = GenericMetadata() self.output_function: Callable[[str], None] = print self.progress_callback: Callable[[int, int], None] | None = None self.cover_url_callback: Callable[[bytes], None] | None = None self.search_result = self.result_no_matches self.cover_page_index = 0 self.cancel = False self.match_list: list[IssueResult] = [] def set_score_min_threshold(self, thresh: int) -> None: self.min_score_thresh = thresh def set_score_min_distance(self, distance: int) -> None: self.min_score_distance = distance def set_additional_metadata(self, md: GenericMetadata) -> None: self.additional_metadata = md def set_name_series_match_threshold(self, delta: int) -> None: self.series_match_thresh = delta def set_publisher_filter(self, flt: list[str]) -> None: self.publisher_filter = flt def set_hasher_algorithm(self, algo: int) -> None: self.image_hasher = algo def set_output_function(self, func: Callable[[str], None]) -> None: self.output_function = func def calculate_hash(self, image_data: bytes) -> int: if self.image_hasher == 3: return ImageHasher(data=image_data).p_hash() if self.image_hasher == 2: return -1 # ImageHasher(data=image_data).average_hash2() return ImageHasher(data=image_data).average_hash() def get_aspect_ratio(self, image_data: bytes) -> float: try: im = Image.open(io.BytesIO(image_data)) w, h = im.size return float(h) / float(w) except Exception: return 1.5 def crop_cover(self, image_data: bytes) -> bytes: im = Image.open(io.BytesIO(image_data)) w, h = im.size try: cropped_im = im.crop((int(w / 2), 0, w, h)) except Exception: logger.exception("cropCover() error") return b"" output = io.BytesIO() cropped_im.convert("RGB").save(output, format="PNG") cropped_image_data = output.getvalue() output.close() return cropped_image_data # Adapted from https://stackoverflow.com/a/10616717/20629671 def crop_border(self, image_data: bytes, ratio: int) -> bytes | None: im = Image.open(io.BytesIO(image_data)) # RGBA doesn't work???? tmp = im.convert("RGB") bg = Image.new("RGB", tmp.size, "black") diff = ImageChops.difference(tmp, bg) diff = ImageChops.add(diff, diff, 2.0, -100) bbox = diff.getbbox() width_percent = 0 height_percent = 0 # If bbox is None that should mean it's solid black if bbox: width = bbox[2] - bbox[0] height = bbox[3] - bbox[1] # Convert to percent width_percent = int(100 - ((width / im.width) * 100)) height_percent = int(100 - ((height / im.height) * 100)) logger.debug( "Width: %s Height: %s, ratio: %s %s ratio met: %s", im.width, im.height, width_percent, height_percent, width_percent > ratio or height_percent > ratio, ) # If there is a difference return the image otherwise return None if width_percent > ratio or height_percent > ratio: output = io.BytesIO() im.crop(bbox).save(output, format="PNG") cropped_image_data = output.getvalue() output.close() return cropped_image_data return None def set_progress_callback(self, cb_func: Callable[[int, int], None]) -> None: self.progress_callback = cb_func def set_cover_url_callback(self, cb_func: Callable[[bytes], None]) -> None: self.cover_url_callback = cb_func def get_search_keys(self) -> SearchKeys: ca = self.comic_archive search_keys: SearchKeys if self.only_use_additional_meta_data: search_keys = SearchKeys( series=self.additional_metadata.series, issue_number=self.additional_metadata.issue, year=self.additional_metadata.year, month=self.additional_metadata.month, issue_count=self.additional_metadata.issue_count, ) return search_keys # see if the archive has any useful meta data for searching with try: for style in metadata_styles: internal_metadata = ca.read_metadata(style) if not internal_metadata.is_empty: break except Exception as e: internal_metadata = GenericMetadata() logger.error("Failed to load metadata for %s: %s", ca.path, e) # try to get some metadata from filename md_from_filename = ca.metadata_from_filename( self.config.Filename_Parsing__complicated_parser, self.config.Filename_Parsing__remove_c2c, self.config.Filename_Parsing__remove_fcbd, self.config.Filename_Parsing__remove_publisher, ) working_md = md_from_filename.copy() working_md.overlay(internal_metadata) working_md.overlay(self.additional_metadata) # preference order: # 1. Additional metadata # 1. Internal metadata # 1. Filename metadata search_keys = SearchKeys( series=working_md.series, issue_number=working_md.issue, year=working_md.year, month=working_md.month, issue_count=working_md.issue_count, ) return search_keys def log_msg(self, msg: Any) -> None: msg = str(msg) for handler in logging.getLogger().handlers: handler.flush() self.output(msg) def output(self, *args: Any, file: Any = None, **kwargs: Any) -> None: # We intercept and discard the file argument otherwise everything is passed to self.output_function # Ensure args[0] is defined and is a string for logger.info if not args: log_args: tuple[Any, ...] = ("",) elif isinstance(args[0], str): log_args = (args[0].strip("\n"), *args[1:]) else: log_args = args log_msg = " ".join([str(x) for x in log_args]) # Always send to logger so that we have a record for troubleshooting logger.info(log_msg, **kwargs) # If we are verbose or quiet we don't need to call the output function if self.config.Runtime_Options__verbose > 0 or self.config.Runtime_Options__quiet: return # default output is stdout self.output_function(*args, **kwargs) def get_issue_cover_match_score( self, primary_img_url: str, alt_urls: list[str], local_cover_hash_list: list[int], use_remote_alternates: bool = False, ) -> Score: # local_cover_hash_list is a list of pre-calculated hashes. # use_remote_alternates - indicates to use alternate covers from CV # If there is no URL return 100 if not primary_img_url: return Score(score=100, url="", hash=0) try: url_image_data = ImageFetcher(self.config.Runtime_Options__config.user_cache_dir).fetch( primary_img_url, blocking=True ) except ImageFetcherException as e: self.log_msg(f"Network issue while fetching cover image from {self.talker.name}. Aborting...") raise IssueIdentifierNetworkError from e if self.cancel: raise IssueIdentifierCancelled # alert the GUI, if needed if self.cover_url_callback is not None: self.cover_url_callback(url_image_data) remote_cover_list = [Score(url=primary_img_url, hash=self.calculate_hash(url_image_data))] if self.cancel: raise IssueIdentifierCancelled if use_remote_alternates: for alt_url in alt_urls: try: alt_url_image_data = ImageFetcher(self.config.Runtime_Options__config.user_cache_dir).fetch( alt_url, blocking=True ) except ImageFetcherException as e: self.log_msg(f"Network issue while fetching alt. cover image from {self.talker.name}. Aborting...") raise IssueIdentifierNetworkError from e if self.cancel: raise IssueIdentifierCancelled # alert the GUI, if needed if self.cover_url_callback is not None: self.cover_url_callback(alt_url_image_data) remote_cover_list.append(Score(url=alt_url, hash=self.calculate_hash(alt_url_image_data))) if self.cancel: raise IssueIdentifierCancelled self.log_msg(f"[{len(remote_cover_list) - 1} alt. covers]") score_list = [] done = False for local_cover_hash in local_cover_hash_list: for remote_cover_item in remote_cover_list: score = ImageHasher.hamming_distance(local_cover_hash, remote_cover_item["hash"]) score_list.append(Score(score=score, url=remote_cover_item["url"], hash=remote_cover_item["hash"])) self.log_msg(f" - {score:03}") if score <= self.strong_score_thresh: # such a good score, we can quit now, since for sure we have a winner done = True break if done: break best_score_item = min(score_list, key=lambda x: x["score"]) return best_score_item def search(self) -> list[IssueResult]: ca = self.comic_archive self.match_list = [] self.cancel = False self.search_result = self.result_no_matches if not pil_available: self.log_msg("Python Imaging Library (PIL) is not available and is needed for issue identification.") return self.match_list if not ca.seems_to_be_a_comic_archive(): self.log_msg(f"Sorry, but {ca.path} is not a comic archive!") return self.match_list cover_image_data = ca.get_page(self.cover_page_index) cover_hash = self.calculate_hash(cover_image_data) # check the aspect ratio # if it's wider than it is high, it's probably a two page spread # if so, crop it and calculate a second hash narrow_cover_hash = None aspect_ratio = self.get_aspect_ratio(cover_image_data) if aspect_ratio < 1.0: right_side_image_data = self.crop_cover(cover_image_data) if right_side_image_data is not None: narrow_cover_hash = self.calculate_hash(right_side_image_data) keys = self.get_search_keys() # normalize the issue number, None will return as "" keys["issue_number"] = IssueString(keys["issue_number"]).as_string() # we need, at minimum, a series and issue number if not (keys["series"] and keys["issue_number"]): self.log_msg("Not enough info for a search!") return [] self.log_msg(f"Using {self.talker.name} to search for:") self.log_msg("\tSeries: " + keys["series"]) self.log_msg("\tIssue: " + keys["issue_number"]) if keys["issue_count"] is not None: self.log_msg("\tCount: " + str(keys["issue_count"])) if keys["year"] is not None: self.log_msg("\tYear: " + str(keys["year"])) if keys["month"] is not None: self.log_msg("\tMonth: " + str(keys["month"])) self.log_msg(f"Searching for {keys['series']} #{keys['issue_number']} ...") try: ct_search_results = self.talker.search_for_series(keys["series"]) except TalkerError as e: self.log_msg(f"Error searching for series.\n{e}") return [] if self.cancel: return [] if ct_search_results is None: return [] series_second_round_list = [] for item in ct_search_results: length_approved = False publisher_approved = True date_approved = True # remove any series that starts after the issue year if keys["year"] is not None and item.start_year is not None: if keys["year"] < item.start_year: date_approved = False for name in [item.name, *item.aliases]: if utils.titles_match(keys["series"], name, self.series_match_thresh): length_approved = True break # remove any series from publishers on the filter if item.publisher is not None: publisher = item.publisher if publisher is not None and publisher.casefold() in self.publisher_filter: publisher_approved = False if length_approved and publisher_approved and date_approved: series_second_round_list.append(item) self.log_msg("Searching in " + str(len(series_second_round_list)) + " series") if self.progress_callback is not None: self.progress_callback(0, len(series_second_round_list)) # now sort the list by name length series_second_round_list.sort(key=lambda x: len(x.name), reverse=False) series_by_id = {series.id: series for series in series_second_round_list} issue_list = None try: if len(series_by_id) > 0: issue_list = self.talker.fetch_issues_by_series_issue_num_and_year( list(series_by_id.keys()), keys["issue_number"], keys["year"] ) except TalkerError as e: self.log_msg(f"Issue with while searching for series details. Aborting...\n{e}") return [] if issue_list is None: return [] shortlist = [] # now re-associate the issues and series # is this really needed? for issue in issue_list: if issue.series_id in series_by_id: shortlist.append((series_by_id[issue.series_id], issue)) if keys["year"] is None: self.log_msg(f"Found {len(shortlist)} series that have an issue #{keys['issue_number']}") else: self.log_msg( f"Found {len(shortlist)} series that have an issue #{keys['issue_number']} from {keys['year']}" ) # now we have a shortlist of series with the desired issue number # Do first round of cover matching counter = len(shortlist) for series, issue in shortlist: if self.progress_callback is not None: self.progress_callback(counter, len(shortlist) * 3) counter += 1 self.log_msg( f"Examining covers for ID: {series.id} {series.name} ({series.start_year}):", ) # Now check the cover match against the primary image hash_list = [cover_hash] if narrow_cover_hash is not None: hash_list.append(narrow_cover_hash) cropped_border = self.crop_border(cover_image_data, self.config.Issue_Identifier__border_crop_percent) if cropped_border is not None: hash_list.append(self.calculate_hash(cropped_border)) logger.info("Adding cropped cover to the hashlist") try: image_url = issue._cover_image or "" alt_urls = issue._alternate_images score_item = self.get_issue_cover_match_score( image_url, alt_urls, hash_list, use_remote_alternates=False ) except Exception: logger.exception("Scoring series failed") self.match_list = [] return self.match_list match = IssueResult( series=f"{series.name} ({series.start_year})", distance=score_item["score"], issue_number=keys["issue_number"], cv_issue_count=series.count_of_issues, url_image_hash=score_item["hash"], issue_title=issue.title or "", issue_id=issue.issue_id or "", series_id=series.id, month=issue.month, year=issue.year, publisher=None, image_url=image_url, alt_image_urls=alt_urls, description=issue.description or "", ) if series.publisher is not None: match.publisher = series.publisher self.match_list.append(match) self.log_msg(f"best score {match.distance:03}") self.log_msg("") if len(self.match_list) == 0: self.log_msg(":-( no matches!") self.search_result = self.result_no_matches return self.match_list # sort list by image match scores self.match_list.sort(key=attrgetter("distance")) lst = [] for i in self.match_list: lst.append(i.distance) self.log_msg(f"Compared to covers in {len(self.match_list)} issue(s): {lst}") def print_match(item: IssueResult) -> None: self.log_msg( "-----> {} #{} {} ({}/{}) -- score: {}".format( item.series, item.issue_number, item.issue_title, item.month, item.year, item.distance, ) ) best_score: int = self.match_list[0].distance if best_score >= self.min_score_thresh: # we have 1 or more low-confidence matches (all bad cover scores) # look at a few more pages in the archive, and also alternate covers online self.log_msg("Very weak scores for the cover. Analyzing alternate pages and covers...") hash_list = [cover_hash] if narrow_cover_hash is not None: hash_list.append(narrow_cover_hash) for page_index in range(1, min(3, ca.get_number_of_pages())): image_data = ca.get_page(page_index) page_hash = self.calculate_hash(image_data) hash_list.append(page_hash) second_match_list = [] counter = 2 * len(self.match_list) for m in self.match_list: if self.progress_callback is not None: self.progress_callback(counter, len(self.match_list) * 3) counter += 1 self.log_msg(f"Examining alternate covers for ID: {m.series_id} {m.series}:") try: score_item = self.get_issue_cover_match_score( m.image_url, m.alt_image_urls, hash_list, use_remote_alternates=True, ) except Exception: logger.exception("failed examining alt covers") self.match_list = [] return self.match_list self.log_msg(f"--->{score_item['score']}") self.log_msg("") if score_item["score"] < self.min_alternate_score_thresh: second_match_list.append(m) m.distance = score_item["score"] if len(second_match_list) == 0: if len(self.match_list) == 1: self.log_msg("No matching pages in the issue.") self.log_msg("--------------------------------------------------------------------------") print_match(self.match_list[0]) self.log_msg("--------------------------------------------------------------------------") self.search_result = self.result_found_match_but_bad_cover_score else: self.log_msg("--------------------------------------------------------------------------") self.log_msg("Multiple bad cover matches! Need to use other info...") self.log_msg("--------------------------------------------------------------------------") self.search_result = self.result_multiple_matches_with_bad_image_scores return self.match_list # We did good, found something! self.log_msg("Success in secondary/alternate cover matching!") self.match_list = second_match_list # sort new list by image match scores self.match_list.sort(key=attrgetter("distance")) best_score = self.match_list[0].distance self.log_msg("[Second round cover matching: best score = {best_score}]") # now drop down into the rest of the processing if self.progress_callback is not None: self.progress_callback(99, 100) # now pare down list, remove any item more than specified distant from the top scores for match_item in reversed(self.match_list): if match_item.distance > best_score + self.min_score_distance: self.match_list.remove(match_item) # One more test for the case choosing limited series first issue vs a trade with the same cover: # if we have a given issue count > 1 and the series from CV has count==1, remove it from match list if len(self.match_list) >= 2 and keys["issue_count"] is not None and keys["issue_count"] != 1: new_list = [] for match in self.match_list: if match.cv_issue_count != 1: new_list.append(match) else: self.log_msg( f"Removing series {match.series} [{match.series_id}] from consideration (only 1 issue)" ) if len(new_list) > 0: self.match_list = new_list if len(self.match_list) == 1: self.log_msg("--------------------------------------------------------------------------") print_match(self.match_list[0]) self.log_msg("--------------------------------------------------------------------------") self.search_result = self.result_one_good_match elif len(self.match_list) == 0: self.log_msg("--------------------------------------------------------------------------") self.log_msg("No matches found :(") self.log_msg("--------------------------------------------------------------------------") self.search_result = self.result_no_matches else: # we've got multiple good matches: self.log_msg("More than one likely candidate.") self.search_result = self.result_multiple_good_matches self.log_msg("--------------------------------------------------------------------------") for match_item in self.match_list: print_match(match_item) self.log_msg("--------------------------------------------------------------------------") return self.match_list