comictagger/comictaggerlib/issueidentifier.py
2024-07-27 19:23:37 -07:00

666 lines
26 KiB
Python

"""A class to automatically identify a comic archive"""
#
# Copyright 2012-2014 ComicTagger Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import io
import logging
from operator import attrgetter
from typing import Any, Callable
from typing_extensions import NotRequired, TypedDict
from comicapi import utils
from comicapi.comicarchive import ComicArchive
from comicapi.genericmetadata import ComicSeries, GenericMetadata
from comicapi.issuestring import IssueString
from comictaggerlib.ctsettings import ct_ns
from comictaggerlib.imagefetcher import ImageFetcher, ImageFetcherException
from comictaggerlib.imagehasher import ImageHasher
from comictaggerlib.resulttypes import IssueResult
from comictalker.comictalker import ComicTalker, TalkerError
logger = logging.getLogger(__name__)
try:
from PIL import Image, ImageChops
pil_available = True
except ImportError:
pil_available = False
class SearchKeys(TypedDict):
series: str
issue_number: str
alternate_number: str | None
month: int | None
year: int | None
issue_count: int | None
alternate_count: int | None
publisher: str | None
imprint: str | None
class Score(TypedDict):
score: NotRequired[int]
url: str
remote_hash: int
local_hash_name: str
local_hash: int
class IssueIdentifierNetworkError(Exception): ...
class IssueIdentifierCancelled(Exception): ...
class IssueIdentifier:
result_no_matches = 0
result_found_match_but_bad_cover_score = 1
result_found_match_but_not_first_page = 2
result_multiple_matches_with_bad_image_scores = 3
result_one_good_match = 4
result_multiple_good_matches = 5
def __init__(
self,
comic_archive: ComicArchive,
config: ct_ns,
talker: ComicTalker,
metadata: GenericMetadata = GenericMetadata(),
) -> None:
self.config = config
self.talker = talker
self.comic_archive: ComicArchive = comic_archive
self.md = metadata
self.image_hasher = 1
self.only_use_additional_meta_data = False
# a decent hamming score, good enough to call it a match
self.min_score_thresh: int = 16
# for alternate covers, be more stringent, since we're a bit more
# scattershot in comparisons
self.min_alternate_score_thresh = 12
# the min distance a hamming score must be to separate itself from
# closest neighbor
self.min_score_distance = 4
# a very strong hamming score, almost certainly the same image
self.strong_score_thresh = 8
# used to eliminate series names that are too long based on our search
# string
self.series_match_thresh = config.Issue_Identifier__series_match_identify_thresh
# used to eliminate unlikely publishers
self.use_publisher_filter = config.Auto_Tag__use_publisher_filter
self.publisher_filter = [s.strip().casefold() for s in config.Auto_Tag__publisher_filter]
self.additional_metadata = GenericMetadata()
self.output_function: Callable[[str], None] = print
self.progress_callback: Callable[[int, int], None] | None = None
self.cover_url_callback: Callable[[bytes], None] | None = None
self.search_result = self.result_no_matches
self.cancel = False
self.match_list: list[IssueResult] = []
def set_output_function(self, func: Callable[[str], None]) -> None:
self.output_function = func
def set_progress_callback(self, cb_func: Callable[[int, int], None]) -> None:
self.progress_callback = cb_func
def set_cover_url_callback(self, cb_func: Callable[[bytes], None]) -> None:
self.cover_url_callback = cb_func
def calculate_hash(self, image_data: bytes) -> int:
if self.image_hasher == 3:
return ImageHasher(data=image_data).p_hash()
if self.image_hasher == 2:
return -1 # ImageHasher(data=image_data).average_hash2()
return ImageHasher(data=image_data).average_hash()
def log_msg(self, msg: Any) -> None:
msg = str(msg)
for handler in logging.getLogger().handlers:
handler.flush()
self.output(msg)
def output(self, *args: Any, file: Any = None, **kwargs: Any) -> None:
# We intercept and discard the file argument otherwise everything is passed to self.output_function
# Ensure args[0] is defined and is a string for logger.info
if not args:
log_args: tuple[Any, ...] = ("",)
elif isinstance(args[0], str):
log_args = (args[0].strip("\n"), *args[1:])
else:
log_args = args
log_msg = " ".join([str(x) for x in log_args])
# Always send to logger so that we have a record for troubleshooting
logger.info(log_msg, **kwargs)
# If we are verbose or quiet we don't need to call the output function
if self.config.Runtime_Options__verbose > 0 or self.config.Runtime_Options__quiet:
return
# default output is stdout
self.output_function(*args, **kwargs)
def identify(self, ca: ComicArchive, md: GenericMetadata) -> tuple[int, list[IssueResult]]:
if not self._check_requirements(ca):
return self.result_no_matches, []
terms, images, extra_images = self._get_search_terms(ca, md)
# we need, at minimum, a series and issue number
if not (terms["series"] and terms["issue_number"]):
self.log_msg("Not enough info for a search!")
return self.result_no_matches, []
self._print_terms(terms, images)
issues = self._search_for_issues(terms)
self.log_msg(f"Found {len(issues)} series that have an issue #{terms['issue_number']}")
final_cover_matching = self._cover_matching(terms, images, extra_images, issues)
# One more test for the case choosing limited series first issue vs a trade with the same cover:
# if we have a given issue count > 1 and the series from CV has count==1, remove it from match list
if len(final_cover_matching) > 1 and terms["issue_count"] is not None and terms["issue_count"] != 1:
for match in final_cover_matching.copy():
if match.issue_count == 1:
self.log_msg(
f"Removing series {match.series} [{match.series_id}] from consideration (only 1 issue)"
)
final_cover_matching.remove(match)
if final_cover_matching:
best_score = final_cover_matching[0].distance
else:
best_score = 0
if best_score >= self.min_score_thresh:
if len(final_cover_matching) == 1:
self.log_msg("No matching pages in the issue.")
self.log_msg("--------------------------------------------------------------------------")
self._print_match(final_cover_matching[0])
self.log_msg("--------------------------------------------------------------------------")
search_result = self.result_found_match_but_bad_cover_score
else:
self.log_msg("--------------------------------------------------------------------------")
self.log_msg("Multiple bad cover matches! Need to use other info...")
self.log_msg("--------------------------------------------------------------------------")
search_result = self.result_multiple_matches_with_bad_image_scores
else:
if len(final_cover_matching) == 1:
self.log_msg("--------------------------------------------------------------------------")
self._print_match(final_cover_matching[0])
self.log_msg("--------------------------------------------------------------------------")
search_result = self.result_one_good_match
elif len(self.match_list) == 0:
self.log_msg("--------------------------------------------------------------------------")
self.log_msg("No matches found :(")
self.log_msg("--------------------------------------------------------------------------")
search_result = self.result_no_matches
else:
# we've got multiple good matches:
self.log_msg("More than one likely candidate.")
search_result = self.result_multiple_good_matches
self.log_msg("--------------------------------------------------------------------------")
for match_item in final_cover_matching:
self._print_match(match_item)
self.log_msg("--------------------------------------------------------------------------")
return search_result, final_cover_matching
def _crop_double_page(self, im: Image.Image) -> Image.Image | None:
w, h = im.size
try:
cropped_im = im.crop((int(w / 2), 0, w, h))
except Exception:
logger.exception("cropCover() error")
return None
return cropped_im
# Adapted from https://stackoverflow.com/a/10616717/20629671
def _crop_border(self, im: Image.Image, ratio: int) -> Image.Image | None:
assert Image
assert ImageChops
# RGBA doesn't work????
tmp = im.convert("RGB")
bg = Image.new("RGB", tmp.size, "black")
diff = ImageChops.difference(tmp, bg)
diff = ImageChops.add(diff, diff, 2.0, -100)
bbox = diff.getbbox()
width_percent = 0
height_percent = 0
# If bbox is None that should mean it's solid black
if bbox:
width = bbox[2] - bbox[0]
height = bbox[3] - bbox[1]
# Convert to percent
width_percent = int(100 - ((width / im.width) * 100))
height_percent = int(100 - ((height / im.height) * 100))
logger.debug(
"Width: %s Height: %s, ratio: %s %s ratio met: %s",
im.width,
im.height,
width_percent,
height_percent,
width_percent > ratio or height_percent > ratio,
)
# If there is a difference return the image otherwise return None
if width_percent > ratio or height_percent > ratio:
return im.crop(bbox)
return None
def _get_remote_hashes(self, urls: list[str]) -> list[tuple[str, int]]:
remote_hashes: list[tuple[str, int]] = []
for url in urls:
try:
alt_url_image_data = ImageFetcher(self.config.Runtime_Options__config.user_cache_dir).fetch(
url, blocking=True
)
except ImageFetcherException as e:
self.log_msg(f"Network issue while fetching alt. cover image from {self.talker.name}. Aborting...")
raise IssueIdentifierNetworkError from e
self._user_canceled(self.cover_url_callback, alt_url_image_data)
remote_hashes.append((url, self.calculate_hash(alt_url_image_data)))
if self.cancel:
raise IssueIdentifierCancelled
return remote_hashes
def _get_issue_cover_match_score(
self,
primary_img_url: str,
alt_urls: list[str],
local_hashes: list[tuple[str, int]],
use_alt_urls: bool = False,
) -> Score:
# local_hashes is a list of pre-calculated hashes.
# use_alt_urls - indicates to use alternate covers from CV
# If there is no URL return 100
if not primary_img_url:
return Score(score=100, url="", remote_hash=0)
self._user_canceled()
urls = [primary_img_url]
if use_alt_urls:
urls.extend(alt_urls)
self.log_msg(f"[{len(alt_urls)} alt. covers]")
remote_hashes = self._get_remote_hashes(urls)
score_list = []
done = False
for local_hash in local_hashes:
for remote_hash in remote_hashes:
score = ImageHasher.hamming_distance(local_hash[1], remote_hash[1])
score_list.append(
Score(
score=score,
url=remote_hash[0],
remote_hash=remote_hash[1],
local_hash_name=local_hash[0],
local_hash=local_hash[1],
)
)
self.log_msg(f" - {score:03}")
if score <= self.strong_score_thresh:
# such a good score, we can quit now, since for sure we have a winner
done = True
break
if done:
break
best_score_item = min(score_list, key=lambda x: x["score"])
return best_score_item
def _check_requirements(self, ca: ComicArchive) -> bool:
if not pil_available:
self.log_msg("Python Imaging Library (PIL) is not available and is needed for issue identification.")
return False
if not ca.seems_to_be_a_comic_archive():
self.log_msg(f"Sorry, but {ca.path} is not a comic archive!")
return False
return True
def _process_cover(self, name: str, image_data: bytes) -> list[tuple[str, Image.Image]]:
assert Image
cover_image = Image.open(io.BytesIO(image_data))
images = [(name, cover_image)]
# check the aspect ratio
# if it's wider than it is high, it's probably a two page spread (back_cover, front_cover)
# if so, crop it and calculate a second hash
aspect_ratio = float(cover_image.height) / float(cover_image.width)
if aspect_ratio < 1.0:
im = self._crop_double_page(cover_image)
if im is not None:
images.append(("double page", im))
# Check and remove black borders. Helps in identifying comics with an excessive black border like https://comicvine.gamespot.com/marvel-graphic-novel-1-the-death-of-captain-marvel/4000-21782/
cropped = self._crop_border(cover_image, self.config.Issue_Identifier__border_crop_percent)
if cropped is not None:
images.append(("black border cropped", cropped))
return images
def _get_images(self, ca: ComicArchive, md: GenericMetadata) -> list[tuple[str, Image.Image]]:
covers: list[tuple[str, Image.Image]] = []
for cover_index in md.get_cover_page_index_list():
image_data = ca.get_page(cover_index)
covers.extend(self._process_cover(f"{cover_index}", image_data))
return covers
def _get_extra_images(self, ca: ComicArchive, md: GenericMetadata) -> list[tuple[str, Image.Image]]:
assert md
covers: list[tuple[str, Image.Image]] = []
for cover_index in range(1, min(3, ca.get_number_of_pages())):
image_data = ca.get_page(md.get_archive_page_index(cover_index))
covers.extend(self._process_cover(f"{cover_index}", image_data))
return covers
def _get_search_keys(self, md: GenericMetadata) -> Any:
search_keys = SearchKeys(
series=md.series,
issue_number=IssueString(md.issue).as_string(),
alternate_number=IssueString(md.alternate_number).as_string(),
month=md.month,
year=md.year,
issue_count=md.issue_count,
alternate_count=md.alternate_count,
publisher=md.publisher,
imprint=md.imprint,
)
return search_keys
def _get_search_terms(
self, ca: ComicArchive, md: GenericMetadata
) -> tuple[SearchKeys, list[tuple[str, Image.Image]], list[tuple[str, Image.Image]]]:
return self._get_search_keys(md), self._get_images(ca, md), self._get_extra_images(ca, md)
def _user_canceled(self, callback: Callable[..., Any] | None = None, *args: Any) -> Any:
if self.cancel:
raise IssueIdentifierCancelled
if callback is not None:
return callback(*args)
def _print_terms(self, keys: SearchKeys, images: list[tuple[str, Image.Image]]) -> None:
assert keys["series"]
assert keys["issue_number"]
self.log_msg(f"Using {self.talker.name} to search for:")
self.log_msg("\tSeries: " + keys["series"])
self.log_msg("\tIssue: " + keys["issue_number"])
# if keys["alternate_number"] is not None:
# self.log_msg("\tAlternate Issue: " + str(keys["alternate_number"]))
if keys["month"] is not None:
self.log_msg("\tMonth: " + str(keys["month"]))
if keys["year"] is not None:
self.log_msg("\tYear: " + str(keys["year"]))
if keys["issue_count"] is not None:
self.log_msg("\tCount: " + str(keys["issue_count"]))
# if keys["alternate_count"] is not None:
# self.log_msg("\tAlternate Count: " + str(keys["alternate_count"]))
# if keys["publisher"] is not None:
# self.log_msg("\tPublisher: " + str(keys["publisher"]))
# if keys["imprint"] is not None:
# self.log_msg("\tImprint: " + str(keys["imprint"]))
for name, _ in images:
self.log_msg("Cover: " + name)
self.log_msg(f"Searching for {keys['series']} #{keys['issue_number']} ...")
def _filter_series(self, terms: SearchKeys, search_results: list[ComicSeries]) -> list[ComicSeries]:
assert terms["series"]
filtered_results = []
for item in search_results:
length_approved = False
publisher_approved = True
date_approved = True
# remove any series that starts after the issue year
if terms["year"] is not None and item.start_year is not None:
if item.start_year > terms["year"] + 1:
date_approved = False
for name in [item.name, *item.aliases]:
if utils.titles_match(terms["series"], name, self.series_match_thresh):
length_approved = True
break
# remove any series from publishers on the filter
if self.use_publisher_filter and item.publisher:
if item.publisher.casefold() in self.publisher_filter:
publisher_approved = False
if length_approved and publisher_approved and date_approved:
filtered_results.append(item)
else:
logger.debug(
"Filtered out series: '%s' length approved: '%s', publisher approved: '%s', date approved: '%s'",
item.name,
length_approved,
publisher_approved,
date_approved,
)
return filtered_results
def _calculate_hashes(self, images: list[tuple[str, Image.Image]]) -> list[tuple[str, int]]:
hashes = []
for name, image in images:
hashes.append((name, ImageHasher(image=image).average_hash()))
return hashes
def _match_covers(
self,
terms: SearchKeys,
images: list[tuple[str, Image.Image]],
issues: list[tuple[ComicSeries, GenericMetadata]],
use_alternates: bool,
) -> list[IssueResult]:
assert terms["issue_number"]
match_results: list[IssueResult] = []
hashes = self._calculate_hashes(images)
counter = 0
alternate = ""
if use_alternates:
alternate = " Alternate"
for series, issue in issues:
self._user_canceled(self.progress_callback, counter, len(issues))
counter += 1
self.log_msg(
f"Examining{alternate} covers for Series ID: {series.id} {series.name} ({series.start_year}):",
)
try:
image_url = issue._cover_image or ""
alt_urls = issue._alternate_images
score_item = self._get_issue_cover_match_score(image_url, alt_urls, hashes, use_alt_urls=use_alternates)
except Exception:
logger.exception(f"Scoring series{alternate} covers failed")
return []
match = IssueResult(
series=f"{series.name} ({series.start_year})",
distance=score_item["score"],
issue_number=terms["issue_number"],
issue_count=series.count_of_issues,
url_image_hash=score_item["remote_hash"],
issue_title=issue.title or "",
issue_id=issue.issue_id or "",
series_id=series.id,
month=issue.month,
year=issue.year,
publisher=None,
image_url=image_url,
alt_image_urls=alt_urls,
description=issue.description or "",
)
if series.publisher is not None:
match.publisher = series.publisher
match_results.append(match)
self.log_msg(f"best score {match.distance:03}")
self.log_msg("")
return match_results
def _print_match(self, item: IssueResult) -> None:
self.log_msg(
"-----> {} #{} {} ({}/{}) -- score: {}".format(
item.series,
item.issue_number,
item.issue_title,
item.month,
item.year,
item.distance,
)
)
def _search_for_issues(self, terms: SearchKeys) -> list[tuple[ComicSeries, GenericMetadata]]:
try:
search_results = self.talker.search_for_series(
terms["series"],
callback=lambda x, y: self._user_canceled(self.progress_callback, x, y),
series_match_thresh=self.config.Issue_Identifier__series_match_search_thresh,
)
except TalkerError as e:
self.log_msg(f"Error searching for series.\n{e}")
return []
# except IssueIdentifierCancelled:
# return []
if not search_results:
return []
filtered_series = self._filter_series(terms, search_results)
if not filtered_series:
return []
self.log_msg(f"Searching in {len(filtered_series)} series")
self._user_canceled(self.progress_callback, 0, len(filtered_series))
series_by_id = {series.id: series for series in filtered_series}
try:
talker_result = self.talker.fetch_issues_by_series_issue_num_and_year(
list(series_by_id.keys()), terms["issue_number"], terms["year"]
)
except TalkerError as e:
self.log_msg(f"Issue with while searching for series details. Aborting...\n{e}")
return []
# except IssueIdentifierCancelled:
# return []
if not talker_result:
return []
self._user_canceled(self.progress_callback, 0, 0)
issues: list[tuple[ComicSeries, GenericMetadata]] = []
# now re-associate the issues and series
for issue in talker_result:
if issue.series_id in series_by_id:
issues.append((series_by_id[issue.series_id], issue))
else:
logger.warning("Talker '%s' is returning arbitrary series when searching by id", self.talker.id)
return issues
def _cover_matching(
self,
terms: SearchKeys,
images: list[tuple[str, Image.Image]],
extra_images: list[tuple[str, Image.Image]],
issues: list[tuple[ComicSeries, GenericMetadata]],
) -> list[IssueResult]:
cover_matching_1 = self._match_covers(terms, images, issues, use_alternates=False)
if len(cover_matching_1) == 0:
self.log_msg(":-( no matches!")
return cover_matching_1
# sort list by image match scores
cover_matching_1.sort(key=attrgetter("distance"))
lst = []
for i in cover_matching_1:
lst.append(i.distance)
self.log_msg(f"Compared to covers in {len(cover_matching_1)} issue(s): {lst}")
cover_matching_2 = []
final_cover_matching = cover_matching_1
if cover_matching_1[0].distance >= self.min_score_thresh:
# we have 1 or more low-confidence matches (all bad cover scores)
# look at a few more pages in the archive, and also alternate covers online
self.log_msg("Very weak scores for the cover. Analyzing alternate pages and covers...")
temp = self._match_covers(terms, images + extra_images, issues, use_alternates=True)
for score in temp:
if score.distance < self.min_alternate_score_thresh:
cover_matching_2.append(score)
if len(cover_matching_2) > 0:
# We did good, found something!
self.log_msg("Success in secondary/alternate cover matching!")
final_cover_matching = cover_matching_2
# sort new list by image match scores
final_cover_matching.sort(key=attrgetter("distance"))
self.log_msg("[Second round cover matching: best score = {best_score}]")
# now drop down into the rest of the processing
best_score = final_cover_matching[0].distance
# now pare down list, remove any item more than specified distant from the top scores
for match_item in reversed(final_cover_matching):
if match_item.distance > (best_score + self.min_score_distance):
final_cover_matching.remove(match_item)
return final_cover_matching