678 lines
26 KiB
Python
678 lines
26 KiB
Python
"""A class to automatically identify a comic archive"""
|
|
#
|
|
# Copyright 2012-2014 ComicTagger Authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import annotations
|
|
|
|
import io
|
|
import logging
|
|
import sys
|
|
from typing import Any, Callable
|
|
|
|
from typing_extensions import NotRequired, TypedDict
|
|
|
|
from comicapi import utils
|
|
from comicapi.comicarchive import ComicArchive
|
|
from comicapi.genericmetadata import GenericMetadata
|
|
from comicapi.issuestring import IssueString
|
|
from comictaggerlib.ctsettings import ct_ns
|
|
from comictaggerlib.imagefetcher import ImageFetcher, ImageFetcherException
|
|
from comictaggerlib.imagehasher import ImageHasher
|
|
from comictaggerlib.resulttypes import IssueResult
|
|
from comictalker.comictalker import ComicTalker, TalkerError
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
try:
|
|
from PIL import Image, ImageChops
|
|
|
|
pil_available = True
|
|
except ImportError:
|
|
pil_available = False
|
|
|
|
|
|
class SearchKeys(TypedDict):
|
|
series: str | None
|
|
issue_number: str | None
|
|
month: int | None
|
|
year: int | None
|
|
issue_count: int | None
|
|
|
|
|
|
class Score(TypedDict):
|
|
score: NotRequired[int]
|
|
url: str
|
|
hash: int
|
|
|
|
|
|
class IssueIdentifierNetworkError(Exception):
|
|
...
|
|
|
|
|
|
class IssueIdentifierCancelled(Exception):
|
|
...
|
|
|
|
|
|
class IssueIdentifier:
|
|
result_no_matches = 0
|
|
result_found_match_but_bad_cover_score = 1
|
|
result_found_match_but_not_first_page = 2
|
|
result_multiple_matches_with_bad_image_scores = 3
|
|
result_one_good_match = 4
|
|
result_multiple_good_matches = 5
|
|
|
|
def __init__(self, comic_archive: ComicArchive, config: ct_ns, talker: ComicTalker) -> None:
|
|
self.config = config
|
|
self.talker = talker
|
|
self.comic_archive: ComicArchive = comic_archive
|
|
self.image_hasher = 1
|
|
|
|
self.only_use_additional_meta_data = False
|
|
|
|
# a decent hamming score, good enough to call it a match
|
|
self.min_score_thresh: int = 16
|
|
|
|
# for alternate covers, be more stringent, since we're a bit more
|
|
# scattershot in comparisons
|
|
self.min_alternate_score_thresh = 12
|
|
|
|
# the min distance a hamming score must be to separate itself from
|
|
# closest neighbor
|
|
self.min_score_distance = 4
|
|
|
|
# a very strong hamming score, almost certainly the same image
|
|
self.strong_score_thresh = 8
|
|
|
|
# used to eliminate series names that are too long based on our search
|
|
# string
|
|
self.series_match_thresh = config.Issue_Identifier__series_match_identify_thresh
|
|
|
|
# used to eliminate unlikely publishers
|
|
self.publisher_filter = [s.strip().casefold() for s in config.Issue_Identifier__publisher_filter]
|
|
|
|
self.additional_metadata = GenericMetadata()
|
|
self.output_function: Callable[[str], None] = IssueIdentifier.default_write_output
|
|
self.callback: Callable[[int, int], None] | None = None
|
|
self.cover_url_callback: Callable[[bytes], None] | None = None
|
|
self.search_result = self.result_no_matches
|
|
self.cover_page_index = 0
|
|
self.cancel = False
|
|
|
|
self.match_list: list[IssueResult] = []
|
|
|
|
def set_score_min_threshold(self, thresh: int) -> None:
|
|
self.min_score_thresh = thresh
|
|
|
|
def set_score_min_distance(self, distance: int) -> None:
|
|
self.min_score_distance = distance
|
|
|
|
def set_additional_metadata(self, md: GenericMetadata) -> None:
|
|
self.additional_metadata = md
|
|
|
|
def set_name_series_match_threshold(self, delta: int) -> None:
|
|
self.series_match_thresh = delta
|
|
|
|
def set_publisher_filter(self, flt: list[str]) -> None:
|
|
self.publisher_filter = flt
|
|
|
|
def set_hasher_algorithm(self, algo: int) -> None:
|
|
self.image_hasher = algo
|
|
|
|
def set_output_function(self, func: Callable[[str], None]) -> None:
|
|
self.output_function = func
|
|
|
|
def calculate_hash(self, image_data: bytes) -> int:
|
|
if self.image_hasher == 3:
|
|
return ImageHasher(data=image_data).p_hash()
|
|
if self.image_hasher == 2:
|
|
return -1 # ImageHasher(data=image_data).average_hash2()
|
|
|
|
return ImageHasher(data=image_data).average_hash()
|
|
|
|
def get_aspect_ratio(self, image_data: bytes) -> float:
|
|
try:
|
|
im = Image.open(io.BytesIO(image_data))
|
|
w, h = im.size
|
|
return float(h) / float(w)
|
|
except Exception:
|
|
return 1.5
|
|
|
|
def crop_cover(self, image_data: bytes) -> bytes:
|
|
im = Image.open(io.BytesIO(image_data))
|
|
w, h = im.size
|
|
|
|
try:
|
|
cropped_im = im.crop((int(w / 2), 0, w, h))
|
|
except Exception:
|
|
logger.exception("cropCover() error")
|
|
return b""
|
|
|
|
output = io.BytesIO()
|
|
cropped_im.convert("RGB").save(output, format="PNG")
|
|
cropped_image_data = output.getvalue()
|
|
output.close()
|
|
|
|
return cropped_image_data
|
|
|
|
# Adapted from https://stackoverflow.com/a/10616717/20629671
|
|
def crop_border(self, image_data: bytes, ratio: int) -> bytes | None:
|
|
im = Image.open(io.BytesIO(image_data))
|
|
|
|
# RGBA doesn't work????
|
|
tmp = im.convert("RGB")
|
|
|
|
bg = Image.new("RGB", tmp.size, "black")
|
|
diff = ImageChops.difference(tmp, bg)
|
|
diff = ImageChops.add(diff, diff, 2.0, -100)
|
|
|
|
bbox = diff.getbbox()
|
|
|
|
width_percent = 0
|
|
height_percent = 0
|
|
|
|
# If bbox is None that should mean it's solid black
|
|
if bbox:
|
|
width = bbox[2] - bbox[0]
|
|
height = bbox[3] - bbox[1]
|
|
|
|
# Convert to percent
|
|
width_percent = int(100 - ((width / im.width) * 100))
|
|
height_percent = int(100 - ((height / im.height) * 100))
|
|
logger.debug(
|
|
"Width: %s Height: %s, ratio: %s %s ratio met: %s",
|
|
im.width,
|
|
im.height,
|
|
width_percent,
|
|
height_percent,
|
|
width_percent > ratio or height_percent > ratio,
|
|
)
|
|
|
|
# If there is a difference return the image otherwise return None
|
|
if width_percent > ratio or height_percent > ratio:
|
|
output = io.BytesIO()
|
|
im.crop(bbox).save(output, format="PNG")
|
|
cropped_image_data = output.getvalue()
|
|
output.close()
|
|
return cropped_image_data
|
|
return None
|
|
|
|
def set_progress_callback(self, cb_func: Callable[[int, int], None]) -> None:
|
|
self.callback = cb_func
|
|
|
|
def set_cover_url_callback(self, cb_func: Callable[[bytes], None]) -> None:
|
|
self.cover_url_callback = cb_func
|
|
|
|
def get_search_keys(self) -> SearchKeys:
|
|
ca = self.comic_archive
|
|
|
|
search_keys: SearchKeys
|
|
if self.only_use_additional_meta_data:
|
|
search_keys = SearchKeys(
|
|
series=self.additional_metadata.series,
|
|
issue_number=self.additional_metadata.issue,
|
|
year=self.additional_metadata.year,
|
|
month=self.additional_metadata.month,
|
|
issue_count=self.additional_metadata.issue_count,
|
|
)
|
|
return search_keys
|
|
|
|
# see if the archive has any useful meta data for searching with
|
|
try:
|
|
if ca.has_cix():
|
|
internal_metadata = ca.read_cix()
|
|
else:
|
|
internal_metadata = ca.read_cbi()
|
|
except Exception as e:
|
|
internal_metadata = GenericMetadata()
|
|
logger.error("Failed to load metadata for %s: %s", ca.path, e)
|
|
|
|
# try to get some metadata from filename
|
|
md_from_filename = ca.metadata_from_filename(
|
|
self.config.Filename_Parsing__complicated_parser,
|
|
self.config.Filename_Parsing__remove_c2c,
|
|
self.config.Filename_Parsing__remove_fcbd,
|
|
self.config.Filename_Parsing__remove_publisher,
|
|
)
|
|
|
|
working_md = md_from_filename.copy()
|
|
|
|
working_md.overlay(internal_metadata)
|
|
working_md.overlay(self.additional_metadata)
|
|
|
|
# preference order:
|
|
# 1. Additional metadata
|
|
# 1. Internal metadata
|
|
# 1. Filename metadata
|
|
search_keys = SearchKeys(
|
|
series=working_md.series,
|
|
issue_number=working_md.issue,
|
|
year=working_md.year,
|
|
month=working_md.month,
|
|
issue_count=working_md.issue_count,
|
|
)
|
|
|
|
return search_keys
|
|
|
|
@staticmethod
|
|
def default_write_output(text: str) -> None:
|
|
sys.stdout.write(text)
|
|
sys.stdout.flush()
|
|
|
|
def log_msg(self, msg: Any, newline: bool = True) -> None:
|
|
msg = str(msg)
|
|
if newline:
|
|
msg += "\n"
|
|
self.output_function(msg)
|
|
|
|
def get_issue_cover_match_score(
|
|
self,
|
|
primary_img_url: str,
|
|
alt_urls: list[str],
|
|
local_cover_hash_list: list[int],
|
|
use_remote_alternates: bool = False,
|
|
use_log: bool = True,
|
|
) -> Score:
|
|
# local_cover_hash_list is a list of pre-calculated hashes.
|
|
# use_remote_alternates - indicates to use alternate covers from CV
|
|
|
|
# If there is no URL return 100
|
|
if not primary_img_url:
|
|
return Score(score=100, url="", hash=0)
|
|
|
|
try:
|
|
url_image_data = ImageFetcher(self.config.Runtime_Options__config.user_cache_dir).fetch(
|
|
primary_img_url, blocking=True
|
|
)
|
|
except ImageFetcherException as e:
|
|
self.log_msg(f"Network issue while fetching cover image from {self.talker.name}. Aborting...")
|
|
raise IssueIdentifierNetworkError from e
|
|
|
|
if self.cancel:
|
|
raise IssueIdentifierCancelled
|
|
|
|
# alert the GUI, if needed
|
|
if self.cover_url_callback is not None:
|
|
self.cover_url_callback(url_image_data)
|
|
|
|
remote_cover_list = [Score(url=primary_img_url, hash=self.calculate_hash(url_image_data))]
|
|
|
|
if self.cancel:
|
|
raise IssueIdentifierCancelled
|
|
|
|
if use_remote_alternates:
|
|
for alt_url in alt_urls:
|
|
try:
|
|
alt_url_image_data = ImageFetcher(self.config.Runtime_Options__config.user_cache_dir).fetch(
|
|
alt_url, blocking=True
|
|
)
|
|
except ImageFetcherException as e:
|
|
self.log_msg(f"Network issue while fetching alt. cover image from {self.talker.name}. Aborting...")
|
|
raise IssueIdentifierNetworkError from e
|
|
|
|
if self.cancel:
|
|
raise IssueIdentifierCancelled
|
|
|
|
# alert the GUI, if needed
|
|
if self.cover_url_callback is not None:
|
|
self.cover_url_callback(alt_url_image_data)
|
|
|
|
remote_cover_list.append(Score(url=alt_url, hash=self.calculate_hash(alt_url_image_data)))
|
|
|
|
if self.cancel:
|
|
raise IssueIdentifierCancelled
|
|
|
|
if use_log and use_remote_alternates:
|
|
self.log_msg(f"[{len(remote_cover_list) - 1} alt. covers]", False)
|
|
if use_log:
|
|
self.log_msg("[ ", False)
|
|
|
|
score_list = []
|
|
done = False
|
|
for local_cover_hash in local_cover_hash_list:
|
|
for remote_cover_item in remote_cover_list:
|
|
score = ImageHasher.hamming_distance(local_cover_hash, remote_cover_item["hash"])
|
|
score_list.append(Score(score=score, url=remote_cover_item["url"], hash=remote_cover_item["hash"]))
|
|
if use_log:
|
|
self.log_msg(score, False)
|
|
|
|
if score <= self.strong_score_thresh:
|
|
# such a good score, we can quit now, since for sure we have a winner
|
|
done = True
|
|
break
|
|
if done:
|
|
break
|
|
|
|
if use_log:
|
|
self.log_msg(" ]", False)
|
|
|
|
best_score_item = min(score_list, key=lambda x: x["score"])
|
|
|
|
return best_score_item
|
|
|
|
def search(self) -> list[IssueResult]:
|
|
ca = self.comic_archive
|
|
self.match_list = []
|
|
self.cancel = False
|
|
self.search_result = self.result_no_matches
|
|
|
|
if not pil_available:
|
|
self.log_msg("Python Imaging Library (PIL) is not available and is needed for issue identification.")
|
|
return self.match_list
|
|
|
|
if not ca.seems_to_be_a_comic_archive():
|
|
self.log_msg(f"Sorry, but {ca.path} is not a comic archive!")
|
|
return self.match_list
|
|
|
|
cover_image_data = ca.get_page(self.cover_page_index)
|
|
cover_hash = self.calculate_hash(cover_image_data)
|
|
|
|
# check the aspect ratio
|
|
# if it's wider than it is high, it's probably a two page spread
|
|
# if so, crop it and calculate a second hash
|
|
narrow_cover_hash = None
|
|
aspect_ratio = self.get_aspect_ratio(cover_image_data)
|
|
if aspect_ratio < 1.0:
|
|
right_side_image_data = self.crop_cover(cover_image_data)
|
|
if right_side_image_data is not None:
|
|
narrow_cover_hash = self.calculate_hash(right_side_image_data)
|
|
|
|
keys = self.get_search_keys()
|
|
# normalize the issue number, None will return as ""
|
|
keys["issue_number"] = IssueString(keys["issue_number"]).as_string()
|
|
|
|
# we need, at minimum, a series and issue number
|
|
if not (keys["series"] and keys["issue_number"]):
|
|
self.log_msg("Not enough info for a search!")
|
|
return []
|
|
|
|
self.log_msg(f"Using {self.talker.name} to search for:")
|
|
self.log_msg("\tSeries: " + keys["series"])
|
|
self.log_msg("\tIssue: " + keys["issue_number"])
|
|
if keys["issue_count"] is not None:
|
|
self.log_msg("\tCount: " + str(keys["issue_count"]))
|
|
if keys["year"] is not None:
|
|
self.log_msg("\tYear: " + str(keys["year"]))
|
|
if keys["month"] is not None:
|
|
self.log_msg("\tMonth: " + str(keys["month"]))
|
|
|
|
self.log_msg(f"Searching for {keys['series']} #{keys['issue_number']} ...")
|
|
try:
|
|
ct_search_results = self.talker.search_for_series(keys["series"])
|
|
except TalkerError as e:
|
|
self.log_msg(f"Error searching for series.\n{e}")
|
|
return []
|
|
|
|
if self.cancel:
|
|
return []
|
|
|
|
if ct_search_results is None:
|
|
return []
|
|
|
|
series_second_round_list = []
|
|
|
|
for item in ct_search_results:
|
|
length_approved = False
|
|
publisher_approved = True
|
|
date_approved = True
|
|
|
|
# remove any series that starts after the issue year
|
|
if keys["year"] is not None and item.start_year is not None:
|
|
if keys["year"] < item.start_year:
|
|
date_approved = False
|
|
|
|
for name in [item.name, *item.aliases]:
|
|
if utils.titles_match(keys["series"], name, self.series_match_thresh):
|
|
length_approved = True
|
|
break
|
|
# remove any series from publishers on the filter
|
|
if item.publisher is not None:
|
|
publisher = item.publisher
|
|
if publisher is not None and publisher.casefold() in self.publisher_filter:
|
|
publisher_approved = False
|
|
|
|
if length_approved and publisher_approved and date_approved:
|
|
series_second_round_list.append(item)
|
|
|
|
self.log_msg("Searching in " + str(len(series_second_round_list)) + " series")
|
|
|
|
if self.callback is not None:
|
|
self.callback(0, len(series_second_round_list))
|
|
|
|
# now sort the list by name length
|
|
series_second_round_list.sort(key=lambda x: len(x.name), reverse=False)
|
|
|
|
series_by_id = {series.id: series for series in series_second_round_list}
|
|
|
|
issue_list = None
|
|
try:
|
|
if len(series_by_id) > 0:
|
|
issue_list = self.talker.fetch_issues_by_series_issue_num_and_year(
|
|
list(series_by_id.keys()), keys["issue_number"], keys["year"]
|
|
)
|
|
except TalkerError as e:
|
|
self.log_msg(f"Issue with while searching for series details. Aborting...\n{e}")
|
|
return []
|
|
|
|
if issue_list is None:
|
|
return []
|
|
|
|
shortlist = []
|
|
# now re-associate the issues and series
|
|
# is this really needed?
|
|
for issue in issue_list:
|
|
if issue.series_id in series_by_id:
|
|
shortlist.append((series_by_id[issue.series_id], issue))
|
|
|
|
if keys["year"] is None:
|
|
self.log_msg(f"Found {len(shortlist)} series that have an issue #{keys['issue_number']}")
|
|
else:
|
|
self.log_msg(
|
|
f"Found {len(shortlist)} series that have an issue #{keys['issue_number']} from {keys['year']}"
|
|
)
|
|
|
|
# now we have a shortlist of series with the desired issue number
|
|
# Do first round of cover matching
|
|
counter = len(shortlist)
|
|
for series, issue in shortlist:
|
|
if self.callback is not None:
|
|
self.callback(counter, len(shortlist) * 3)
|
|
counter += 1
|
|
|
|
self.log_msg(
|
|
f"Examining covers for ID: {series.id} {series.name} ({series.start_year}) ...",
|
|
newline=False,
|
|
)
|
|
|
|
# Now check the cover match against the primary image
|
|
hash_list = [cover_hash]
|
|
if narrow_cover_hash is not None:
|
|
hash_list.append(narrow_cover_hash)
|
|
|
|
cropped_border = self.crop_border(cover_image_data, self.config.Issue_Identifier__border_crop_percent)
|
|
if cropped_border is not None:
|
|
hash_list.append(self.calculate_hash(cropped_border))
|
|
logger.info("Adding cropped cover to the hashlist")
|
|
|
|
try:
|
|
image_url = issue.cover_image or ""
|
|
alt_urls = issue.alternate_images
|
|
|
|
score_item = self.get_issue_cover_match_score(
|
|
image_url, alt_urls, hash_list, use_remote_alternates=False
|
|
)
|
|
except Exception:
|
|
logger.exception("Scoring series failed")
|
|
self.match_list = []
|
|
return self.match_list
|
|
|
|
match: IssueResult = {
|
|
"series": f"{series.name} ({series.start_year})",
|
|
"distance": score_item["score"],
|
|
"issue_number": keys["issue_number"],
|
|
"cv_issue_count": series.count_of_issues,
|
|
"url_image_hash": score_item["hash"],
|
|
"issue_title": issue.title or "",
|
|
"issue_id": issue.issue_id or "",
|
|
"series_id": series.id,
|
|
"month": issue.month,
|
|
"year": issue.year,
|
|
"publisher": None,
|
|
"image_url": image_url,
|
|
"alt_image_urls": alt_urls,
|
|
"description": issue.description or "",
|
|
}
|
|
if series.publisher is not None:
|
|
match["publisher"] = series.publisher
|
|
|
|
self.match_list.append(match)
|
|
|
|
self.log_msg(f" --> {match['distance']}", newline=False)
|
|
|
|
self.log_msg("")
|
|
|
|
if len(self.match_list) == 0:
|
|
self.log_msg(":-( no matches!")
|
|
self.search_result = self.result_no_matches
|
|
return self.match_list
|
|
|
|
# sort list by image match scores
|
|
self.match_list.sort(key=lambda k: k["distance"])
|
|
|
|
lst = []
|
|
for i in self.match_list:
|
|
lst.append(i["distance"])
|
|
|
|
self.log_msg(f"Compared to covers in {len(self.match_list)} issue(s):", newline=False)
|
|
self.log_msg(str(lst))
|
|
|
|
def print_match(item: IssueResult) -> None:
|
|
self.log_msg(
|
|
"-----> {} #{} {} ({}/{}) -- score: {}".format(
|
|
item["series"],
|
|
item["issue_number"],
|
|
item["issue_title"],
|
|
item["month"],
|
|
item["year"],
|
|
item["distance"],
|
|
)
|
|
)
|
|
|
|
best_score: int = self.match_list[0]["distance"]
|
|
|
|
if best_score >= self.min_score_thresh:
|
|
# we have 1 or more low-confidence matches (all bad cover scores)
|
|
# look at a few more pages in the archive, and also alternate covers online
|
|
self.log_msg("Very weak scores for the cover. Analyzing alternate pages and covers...")
|
|
hash_list = [cover_hash]
|
|
if narrow_cover_hash is not None:
|
|
hash_list.append(narrow_cover_hash)
|
|
for page_index in range(1, min(3, ca.get_number_of_pages())):
|
|
image_data = ca.get_page(page_index)
|
|
page_hash = self.calculate_hash(image_data)
|
|
hash_list.append(page_hash)
|
|
|
|
second_match_list = []
|
|
counter = 2 * len(self.match_list)
|
|
for m in self.match_list:
|
|
if self.callback is not None:
|
|
self.callback(counter, len(self.match_list) * 3)
|
|
counter += 1
|
|
self.log_msg(f"Examining alternate covers for ID: {m['series_id']} {m['series']} ...", newline=False)
|
|
try:
|
|
score_item = self.get_issue_cover_match_score(
|
|
m["image_url"],
|
|
m["alt_image_urls"],
|
|
hash_list,
|
|
use_remote_alternates=True,
|
|
)
|
|
except Exception:
|
|
logger.exception("failed examining alt covers")
|
|
self.match_list = []
|
|
return self.match_list
|
|
self.log_msg(f"--->{score_item['score']}")
|
|
self.log_msg("")
|
|
|
|
if score_item["score"] < self.min_alternate_score_thresh:
|
|
second_match_list.append(m)
|
|
m["distance"] = score_item["score"]
|
|
|
|
if len(second_match_list) == 0:
|
|
if len(self.match_list) == 1:
|
|
self.log_msg("No matching pages in the issue.")
|
|
self.log_msg("--------------------------------------------------------------------------")
|
|
print_match(self.match_list[0])
|
|
self.log_msg("--------------------------------------------------------------------------")
|
|
self.search_result = self.result_found_match_but_bad_cover_score
|
|
else:
|
|
self.log_msg("--------------------------------------------------------------------------")
|
|
self.log_msg("Multiple bad cover matches! Need to use other info...")
|
|
self.log_msg("--------------------------------------------------------------------------")
|
|
self.search_result = self.result_multiple_matches_with_bad_image_scores
|
|
return self.match_list
|
|
|
|
# We did good, found something!
|
|
self.log_msg("Success in secondary/alternate cover matching!")
|
|
|
|
self.match_list = second_match_list
|
|
# sort new list by image match scores
|
|
self.match_list.sort(key=lambda k: k["distance"])
|
|
best_score = self.match_list[0]["distance"]
|
|
self.log_msg("[Second round cover matching: best score = {best_score}]")
|
|
# now drop down into the rest of the processing
|
|
|
|
if self.callback is not None:
|
|
self.callback(99, 100)
|
|
|
|
# now pare down list, remove any item more than specified distant from the top scores
|
|
for match_item in reversed(self.match_list):
|
|
if match_item["distance"] > best_score + self.min_score_distance:
|
|
self.match_list.remove(match_item)
|
|
|
|
# One more test for the case choosing limited series first issue vs a trade with the same cover:
|
|
# if we have a given issue count > 1 and the series from CV has count==1, remove it from match list
|
|
if len(self.match_list) >= 2 and keys["issue_count"] is not None and keys["issue_count"] != 1:
|
|
new_list = []
|
|
for match in self.match_list:
|
|
if match["cv_issue_count"] != 1:
|
|
new_list.append(match)
|
|
else:
|
|
self.log_msg(
|
|
f"Removing series {match['series']} [{match['series_id']}] from consideration (only 1 issue)"
|
|
)
|
|
|
|
if len(new_list) > 0:
|
|
self.match_list = new_list
|
|
|
|
if len(self.match_list) == 1:
|
|
self.log_msg("--------------------------------------------------------------------------")
|
|
print_match(self.match_list[0])
|
|
self.log_msg("--------------------------------------------------------------------------")
|
|
self.search_result = self.result_one_good_match
|
|
|
|
elif len(self.match_list) == 0:
|
|
self.log_msg("--------------------------------------------------------------------------")
|
|
self.log_msg("No matches found :(")
|
|
self.log_msg("--------------------------------------------------------------------------")
|
|
self.search_result = self.result_no_matches
|
|
else:
|
|
# we've got multiple good matches:
|
|
self.log_msg("More than one likely candidate.")
|
|
self.search_result = self.result_multiple_good_matches
|
|
self.log_msg("--------------------------------------------------------------------------")
|
|
for match_item in self.match_list:
|
|
print_match(match_item)
|
|
self.log_msg("--------------------------------------------------------------------------")
|
|
|
|
return self.match_list
|